
Week 3 Part I
Kyle Dewey

Thursday, July 12, 12

Overview

• Odds & Ends

• Constants

• Errors

• Functions

• Expressions versus statements

Thursday, July 12, 12

Pre-Lab

Thursday, July 12, 12

Underflow & Overflow
Note

Thursday, July 12, 12

Constants

Thursday, July 12, 12

Constants

• Values which never change

• Specific values are constants

•55

•27.2

•‘a’

•“foobar”

Thursday, July 12, 12

Constants

• Specifically in the program text

• Constant in that 52 always holds the same
value

• We cannot redefine 52 to be 53

Thursday, July 12, 12

Symbolic Constants

• Usually when programmers say “constant”,
they mean “symbolic constant”

• Values that never change, but referred to
using some symbol

• i.e. π (pi - 3.14...)

• Mapping between symbol and value is
explicitly defined somewhere

Thursday, July 12, 12

In C

• Use #define

• By convention, constants should be entirely
in caps

#define PI 3.14
...
int x = PI * 5;

Thursday, July 12, 12

Mutability

• Constants are, well, constant!

• Cannot be changed while code runs

#define PI 3.14
...
PI = 4; // not valid C!

Thursday, July 12, 12

What #define Does

• Defines a text substitution for the
provided symbol

• This text is replaced during compilation by
the C preprocessor (cpp)

Thursday, July 12, 12

Example #1

#define PI 3.14
...
int x = PI * 5;

Code

int x = 3.14 * 5;After
Preprocessor

Thursday, July 12, 12

Example #2

Code

3.14 = 4;After
Preprocessor

#define PI 3.14
...
PI = 4;

Thursday, July 12, 12

Best Practices

• Generally, all constants should be made
symbolic

• Easier to change if needed later on

• Gives more semantic meaning (i.e. PI is
more informative than 3.14...)

• Possibly less typing

Thursday, July 12, 12

Errors

Thursday, July 12, 12

Errors

• Generally, expected result does not match
actual result

• Four kinds of errors are relevant to CS16:

• Syntax errors

• Linker errors

• Runtime errors

• Logic errors

Thursday, July 12, 12

Errors

• Four kinds of errors are relevant to CS16:

• Syntax errors

• Linker errors

• Runtime errors

• Logic errors

Thursday, July 12, 12

Syntax Error

• A “sentence” was formed that does not
exist in the language

• For example, “Be an awesome program”
isn’t valid C

Thursday, July 12, 12

Syntax Error

• Easiest to correct

• Compiler will not allow it

• *Usually* it will say where it is exactly

Thursday, July 12, 12

On Syntax Errors

• ...sometimes the compiler is really bad at
figuring out where the error is

#include <stdio.h>

int main() {
 printf("moo")
 printf("cow");
 return 0;
}

Thursday, July 12, 12

Reality
#include <stdio.h>

int main() {
 printf("moo")
 printf("cow");
 return 0;
}

• Missing semicolon at line 4

Thursday, July 12, 12

GCC
#include <stdio.h>

int main() {
 printf("moo")
 printf("cow");
 return 0;
}

syntax.c: In function ‘main’:
syntax.c:5: error: expected ‘;’ before
‘printf’

Thursday, July 12, 12

Ch
#include <stdio.h>

int main() {
 printf("moo")
 printf("cow");
 return 0;
}

ERROR: multiple operands together
ERROR: syntax error before or at line 5
in file syntax.c
 ==>: printf("cow");
 BUG: printf("cow")<== ???

Thursday, July 12, 12

The Point

• Compilers are just other programs

• Programs can be wrong

• Programs are not as smart as people

Thursday, July 12, 12

Errors

• Four kinds of errors are relevant to CS16:

• Syntax errors

• Linker errors

• Runtime errors

• Logic errors

Thursday, July 12, 12

Recall Linking

1: somethingFromHere();
2: somethingFromElsewhere();
3: somethingElseFromHere();

somethingFromHere

somethingElseFromHere

somethingFromElsewhere

Thursday, July 12, 12

Recall Linking

somethingFromHere

somethingElseFromHere

somethingFromElsewhere

Thursday, July 12, 12

Linker Errors

• What if somethingFromElsewhere is
nowhere to be found?

• Missing a piece

• Cannot make the executable

Thursday, July 12, 12

Example

int something();

int main() {
 something();
 return 0;
}

• int something(); tells the
compiler that something exists
somewhere, but it does not actually give
something

Thursday, July 12, 12

Example
int something();

int main() {
 something();
 return 0;
}

Undefined symbols for architecture
x86_64:
 "_something", referenced from:
 _main in ccM6c8aW.o
ld: symbol(s) not found for
architecture x86_64

Thursday, July 12, 12

Errors

• Four kinds of errors are relevant to CS16:

• Syntax errors

• Linker errors

• Runtime errors

• Logic errors

Thursday, July 12, 12

Runtime Errors

• Error that occurs while the code is running

• Compilation and linking must have
succeeded to get to this point

Thursday, July 12, 12

Examples

• Overflow

unsigned char x = 255;
x = x + 1;

• Underflow

unsigned char x =0;
x = x - 1;

Thursday, July 12, 12

Examples

• Divide by zero (especially for integers!)

unsigned int x = 5 / 0;

• Wrong printf placeholder

printf(“%s”, 57);

Thursday, July 12, 12

Errors

• Four kinds of errors are relevant to CS16:

• Syntax errors

• Linker errors

• Runtime errors

• Logic errors

Thursday, July 12, 12

Logic Errors

• It works!

• ...but it doesn’t do what you wanted

• Like getting the wrong order at a
restaurant

Thursday, July 12, 12

Examples

• Transcribed an equation incorrectly

• Using the wrong variable

• Lack of understanding of problem

• etc. etc. etc...

Thursday, July 12, 12

Logic Errors

• By far, the most difficult to debug

• It might be done almost correctly

• This is why testing is so important!

Thursday, July 12, 12

Functions
Divide and Conquer Revisited

Thursday, July 12, 12

Divide and Conquer

• Break a problem down into distinct
subproblems, solve them individually, and
finally combine them

Thursday, July 12, 12

Divide and Conquer

Program

Input

Output

Thursday, July 12, 12

Divide and Conquer

Subprogram 1
Input

Output
Subprogram 2

Output / Input

Thursday, July 12, 12

Divide and Conquer

Input

Output
Subprogram 2

Subprogram A

Subprogram B Output / Input

Thursday, July 12, 12

Input and Output

• Intentionally left ambiguous

• This general model is widely applicable

Program
Input Output

Thursday, July 12, 12

Relation to Functions

• Consider the function printf

printf

Formatting string,
variables to print

Something on the
terminal

Thursday, July 12, 12

printf Function

printf(“%i\n”, myInteger)

printf

“%i\n”

myInteger

<<myInteger on
the terminal>>

Thursday, July 12, 12

Functions

• A way of breaking down programs into
(more or less) independent units

• Can be tested individually

• Easier to think about

Thursday, July 12, 12

Function Input / Output

• Input: parameters (more on this later)

• Output: return value

Thursday, July 12, 12

Functions

Input

Output
Function C

Function A

Function B Output / Input

Thursday, July 12, 12

Functions
Input

Output
Function C

Function A

Function B Output / Input

functionC(functionA(Input),
 functionB(Input))

Thursday, July 12, 12

Using Functions in C

• Function names have the same rules as
variables

• Functions are called like so:

noArguments();
printf(“hi”);
printf(“%i”, myInteger);

Thursday, July 12, 12

Making Functions in C

• Function definition template (p =
parameter):

returnType functionName(p1,p2,...,pN)
{
 // function body
}

Thursday, July 12, 12

Returning

• Functions can optionally return values
using the return reserved word

• This is a special output mechanism

Thursday, July 12, 12

Examples
int toSecondPower(int number) {
 return number * number;
}

double doubleIt1(double number) {
 return number + number;
}

double doubleIt2(double number) {
 return number * 2;
}

Thursday, July 12, 12

Bigger Example

int craziness(double number) {
 int x = (int)(number * 2);
 double y = x + 2;
 int z = (int)(y * y) + x;
 return z;
}

Thursday, July 12, 12

Question

• Return type doesn’t match what’s returned

• What happens?

int mismatch(double number) {
 return number;
}

Thursday, July 12, 12

Answer
• Treated as a cast to the return type

int mismatch(double number) {
 return number;
}

int main() {
 // prints out 5
 printf(“%i\n”, mismatch(5.5));
 return 0;
}

Thursday, July 12, 12

Question

• Two returns - What happens?

int craziness2(double number) {
 int x = (int)(number * 2);
 return x;
 double y = x + 2;
 int z = (int)(y * y) + x;
 return z;
}

Thursday, July 12, 12

Answer

• Functions can return at most once

• Everything past the first one is ignored

int craziness2(double number) {
 int x = (int)(number * 2);
 return x;
 double y = x + 2;
 int z = (int)(y * y) + x;
 return z;
}

Thursday, July 12, 12

Question

• There is no explicit return

• What happens?

int craziness3(double number) {
 int x = (int)(number * 2);
 double y = x + 2;
 int z = (int)(y * y) + x;
}

Thursday, July 12, 12

Answer

• It will return something...but who knows
what

• Undefined behavior

• gcc will give a warning if given the -Wall
flag

gcc -Wall myProgram.c

Thursday, July 12, 12

“May Return”

• Functions don’t necessarily need to return
values

• Can still be useful

Thursday, July 12, 12

void Return Type

• If a function has a return type of void, this
mean it does not return anything

int globalVariable = 0;

void incrementGlobal() {
 globalVariable++;
}

Thursday, July 12, 12

void and Return

• return can still be used with void
functions

• Simply ends the execution of the function

• Important in discussing control flow

void something() {
 return;

}

Thursday, July 12, 12

Question

• Returning something with void

• What happens?

void function() {
 return 5;
}

Thursday, July 12, 12

Answer

• Nothing is returned

• gcc gives a warning about this

void function() {
 return 5;
}

Thursday, July 12, 12

Function Prototypes

• Needed to tell the compiler a function
exists

• Without them, functions have to be
ordered carefully or the compiler can get
confused

Thursday, July 12, 12

Without Prototypes
void something() {
 return;

}

int getFive() {
 something();
 return 5;
}

• Compiles fine

Thursday, July 12, 12

Without Prototypes
int getFive() {
 something();
 return 5;
}

void something() {
 return;

}
prototypes.c:6: warning: conflicting
types for ‘something’
prototypes.c:2: warning: previous
implicit declaration of ‘something’
was here

Thursday, July 12, 12

Function Prototypes

• Look just like the definition, but they lack a
body

returnType functionName(p1,p2,...,pN);

Thursday, July 12, 12

Prototype Example
int getFive();
void something();

int getFive() {
 something();
 return 5;
}

void something() {
 return;

}

• Compiles fine
Thursday, July 12, 12

Parameters Revisited

int addTen(int input) {
 return input + 10;
}

...

addTen(5);

Thursday, July 12, 12

Parameters Revisited

int addTen(int input) {
 return input + 10;
}

...

addTen(5);

Formal Parameter

Actual Parameter

Thursday, July 12, 12

Putting it All Together

Thursday, July 12, 12

Example

• A program reads in a signed integer

• The program adds 50 to the integer

• The program prints the result out to the
user

•functionExample.c

Thursday, July 12, 12

